A multiband perfect absorber based on hyperbolic metamaterials

نویسندگان

  • Kandammathe Valiyaveedu Sreekanth
  • Mohamed ElKabbash
  • Yunus Alapan
  • Alireza R. Rashed
  • Umut A. Gurkan
  • Giuseppe Strangi
چکیده

In recent years, considerable research efforts have been focused on near-perfect and perfect light absorption using metamaterials spanning frequency ranges from microwaves to visible frequencies. This relatively young field is currently facing many challenges that hampers its possible practical applications. In this paper, we present grating coupled-hyperbolic metamaterials (GC-HMM) as multiband perfect absorber that can offer extremely high flexibility in engineering the properties of electromagnetic absorption. The fabricated GC-HMMs exhibit several highly desirable features for technological applications such as polarization independence, wide angle range, broad- and narrow- band modes, multiband perfect and near perfect absorption in the visible to near-IR and mid-IR spectral range. In addition, we report a direct application of the presented system as an absorption based plasmonic sensor with a record figure of merit for this class of sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced wavelength-selective absorber for thermal detectors based on metamaterials

The dissipative electromagnetic energy absorption of tailored metamaterials can be exploited to improve the spectral sensitivity and selectivity of thermal detectors. The desired detector characteristics are engineered by tuning the singleor multiband absorption by resonance frequency, magnitude, and spectral bandwidth, strongly depending on the geometrical design of metamaterials. Here, the op...

متن کامل

Rough metal and dielectric layers make an even better hyperbolic metamaterial

We numerically investigate the influence of roughness in layer thicknesses on the properties of hyperbolic metamaterials (HMMs). We show that random spatial variation of dielectric and metal layer thicknesses, similar to what occurs during actual structure fabrication, leads to dramatic absorption increase compared to an ideal, smooth-layer HMM; the absorption increases more strongly when rough...

متن کامل

Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method

In the near field, radiative heat transfer can exceed the prediction from Planck's law by several orders of magnitude, when the interacting materials support surface polaritons in the infrared range. However, if the emitter and absorber are made from two different materials, which support surface polariton resonances at different frequencies, the mismatch between surface polariton resonance fre...

متن کامل

Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons

We theoretically investigate wide-angle spectrally selective absorber by utilizing dispersionless Tamm plasmon polaritons (TPPs) under TM polarization. TPPs are resonant tunneling effects occurring on the interface between one-dimensional photonic crystals (1DPCs) and metal slab, and their dispersion properties are essentially determined by that of 1DPCs. Our investigations show that dispersion...

متن کامل

Terahertz Metamaterials for Modulation and Detection

This paper reviews recent work in the area of active metamaterials where transistors and circuitry are embedded within metamaterial structures for novel functions. In one function, embedding of psuedomorphic high electron mobility transistor (pHEMT) within the metamaterial resonator allows realization of a terahertz modulator. A variation of this approach utilizes diodes to modulate the metamat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016